Learn HTML
way

Programming basics

— o for beginners
‘“ederst"“d
une“g\-‘s\\‘.

Learn HTML the fun way — Programming basics for beginners

Version 1.7
Copyright © 2024 by Sven Koerber-Abe
For the newest version visit: http://sven.kir.jp/JS

The text of this work is licensed under the Creative Commons
Attribution-NonCommercial- ShareAlike 4.0 International License.
To view a copy of this license, visit:
https://creativecommons.org/licenses/by-nc-sa/4.0/

[@0ce)

This book was made using the following tools:

* Text editors: Geany, Gedit, Kate & CotEditor
* Asciidoc tools: Asciidoc & Asciidoctor-pdf

* PDF merge utility: Preview

* Front page chili & emoji graphics: Noto Emoji
* Graphics editor: Gimp

* Front & back page editor: LibreOffice

* Browser: Firefox

This book is released under a free license, meaning that you can copy &
print it as many times as you like. If you work at a copy shop and are
worried if copying or printing this book is legal: Yes, it is! Please go on
and tell anybody who might be interested about it.

http://sven.kir.jp/JS
https://creativecommons.org/licenses/by-nc-sa/4.0/

Learn HTML the fun way
— Programming basics for
beginners

Sven Koerber-Abe

Version 1.7

Contents

Acknowledgements
Intro
What tools do you need?
Basic structure of HTML files
Empty HTML file
HTML formatting
Paragraphs & line breaks
Bold, Italics & Co.
Headings
Colors
Font
Links
Links to locations on the same page
Links to other files
Images
Image border and alt name
Styling the body
Body border & shadow
Horizontal line
Lists
Sharing & uploading your HTML files
Your own homepage on the Internet
Further reading

License

10
16
18
18
23
27
31
37
41
42
46
49
55
58
67
72
74
81
82
84
86

Acknowledgements

O

My biggest thanks to all the nice people at the
Aoyama Gakuin University Tokyo, especially the
Faculty of Science and Engineering as well as
Aoyama Standard for supporting even my most
unusual projects. You all rock! ;-)

Intro

What is this book series all about?

First things first: this book series called Programming basics for
beginners is not for those who want to reach a professional level in
web programming in as short a time as possible (those people
better check out the more advanced resources in the chapter
Further reading right away). The purpose of this book series is to
show absolute programming beginners how easy it is and, most
importantly, what fun it can be to create your own small webpages
and programs that can be used on a variety of devices. Because
with computers, tablets or smartphones you can do more than just
play pre-made games or watch cat videos from the net.

Please don’t get me wrong: games are a great pastime, and
watching cat videos is an important basic human need - but it
would be a shame to think that something like "programming" is
far too difficult for oneself. With this book series, there is now a
very simple and (sometimes) fun introduction to programming.
Because writing your own little webpage and creating little
practical apps is not that hard at all. And if you really have caught
the programming fever at the end of this series, then with the
programming basics presented here you already got the necessary
basic knowledge to tackle more advanced programming stuff.

Who am I and why did I write this
book?

My name is Sven Koerber-Abe, currently I work as an associate
professor at the Faculty of Engineering of the Aoyama Gakuin
University in Tokyo. My area of expertise here primarily is
language education.

The reason why I wrote this book: while there are a lot of good and
professional textbooks for HTML and JavaScript with the goal to
produce advanced programmers, at the same time there is
unfortunately also a glaring lack of freely licensed HTML and
especially JavaScript textbooks for absolute programming
beginners. And since I particularly wanted to have some textbooks
that are written in simple English and therefore easy to
understand even for non-native English language learners, I just
wrote them myself.

Why HTML & JavaScript?

Depending on how many professional programmers you ask about
how beginners should best learn programming, you will get just as
many different answers. Many times you will hear that you have
to learn programming with that one programming language (...
most of the times, that one programming language happens to be
the programming language with which the asked programmer
earns his money..). And of course, all other programming
languages are not suitable to really start learning to program.

So here comes an important fact, which only very few professional
programmers publicly want to admit - but in secret will certainly
affirm: actually, roughly all common programming languages are
not that different. Honestly! The basic functionalities are quite
similar, and that means that if you know one programming
language well enough, you can easily switch to other programming
languages.

So why does this book series teach HTML and JavaScript in
particular? Surely there are other programming languages that
run faster or are more modern? Well, there are several reasons for
that:

* Web pages, programs and apps created with HTML and
JavaScript run without any customizations on a wide variety of

brand-new as well as fairly old devices such as computers,
tablets, or smartphones. Actually, any device that has a
reasonably modern browser can run the webpages and apps
presented in this book series.

* You don’t need any special developer software to create HTML
and JavaScript. A simple text editor is perfectly sufficient.

* Although HTML and especially JavaScript are powerful tools
that can be used to create an incredible variety of applications,
the basics are fairly easy to learn.

How this book teaches stuff

As already mentioned, this book series teaches just the basics of
HTML and JavaScript programming without going too deep into
complicated details.

This book, which is the very first book in the Programming basics
for beginners series, is about using HTML to create attractive (and
static) web pages that will look good in any browser. Among other
things, projects tackle making HTML pages that look like pages
from a daily newspaper, complete with headings, sub-headings
and paragraphs. Another project involves embedding images and
creating borders and shadows to make the web page look like a
pamphlet.

In the second book of the series, called Learn JavaScript the fun
way, we will bring movement into the HTML pages using
JavaScript. Starting with quite simple projects like turning your
own computer into a calculator, we’ll move on to bigger and bigger
projects like making a dog-years converter or a math training app.
In the end, there is the final big project: creating a small science
fiction game in which a rocket launch has to be performed.

All this may sound quite complicated and difficult - but don’t
worry! Everything is explained in a simple way for absolute

programming beginners seasoned with a small portion of fun.

What is this strange "Creative
Commons" license all about?

This license means several things: first, it means that anyone can
read this book for free and even share copies of it with anybody
they know.

But it means much more: you don’t have to take this book just "as
it is". Everyone who wants to, may use the whole book or only
parts of it to change it, expand or shorten it, combine it with other
things and pass it on. You just may not charge money for it, you
have to name the original authors and you have to put the
resulting stuff under the same license. So this license doesn’t just
mean that you can legally use a book for free - it also means that
knowledge itself is free and can and should be shared.

Why is there a chili pepper on the
front page?

Because I like chili.

What tools do you need?

Computer

First of all, you need a computer. It doesn’t matter if it runs
Windows, Linux or MacOS. Your computer doesn’t have to be the
newest model, even older devices will do.

As for programming with HTML and JavaScript: the programs
created with them will run on computers, but also on tablets or
smartphones without any problems. And to be honest, the HTML

files in this book can also easlily be created with a tablet or
smartphone. It is only important to mention that the creation of
JavaScript in the next book is done on computers, because here
you get an easy to understand feedback from the computer if
something was programmed wrong.

Text editor

As for the necessary software, the nice thing about programming
HTML and JavaScript is that you don’t need big or expensive
development tools. There certainly is a bunch of so called
Integrated Development Environments (or IDE for short) and
professional programmers are happily using them. But for a
beginner to start with such software behemoths would be the
same thing as using a F1 race car for learning how to drive.

You only need a so called text editor. It doesn’t really matter which
text editor you use, so please choose one that is easy for you to use.
This book lists some popular text editors, all of which are free and
Open Source, but there are plenty of others.

For a more detailed overview, Wikipedia has a
o comparison of the most popular text editors:

https://en.wikipedia.org/wiki/

Comparison_of_text_editors

On Windows, Notepad++ is a popular choice (not to be confused
with the software already included in Windows called "Notepad").
On Linux, there are Gedit or Kate, and on Mac, CotEditor would be
a good choice. And finally, the text editor Geany is available on all
three platforms.

* Notepad++: https://notepad-plus-plus.org/
* Gedit: https://wiki.gnome.org/Apps/Gedit

» Kate: https://kate-editor.org/

https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://notepad-plus-plus.org/
https://wiki.gnome.org/Apps/Gedit
https://kate-editor.org/

» CotEditor: https://coteditor.com/

* Geany: https://geany.org/

It is perhaps important to mention that you should not use a Word
Processor or Office Suite for programming. Programming with
these is possible under certain circumstances, but not really
recommended for beginners, because word processors normally
save files in formats that are not suitable for programming.
Moreover, a text editor offers the advantage of so-called "syntax
highlighting", where the respective parts of your own program are
highlighted in different colors (more about this later in the book).

Browser

To see the web pages or use the apps presented here, only a
browser is needed. Your device surely already has a browser
installed, for example Edge, Chrome or Safari. With these browsers
everything presented here works without problems. In this book
the browser Firefox is used, for the simple reason that this one is
free and Open Source. If you want to use it on your device as well,
please feel free to install it (Firefox is available for a variety of
devices and operating systems).

 Firefox: https://www.mozilla.org/en-US/firefox/new/

That is actually all that is needed for programming. So let’s get
started!

Code presentation in the book

Whenever this book describes programming code, it is displayed in
a box like the one below. If you look closely, you may notice that
some words of the code are displayed in different colors and some
words even are displayed in a bold font. This coloring (and
"bolding"?) of certain keywords is called "syntax highlighting":

https://coteditor.com/
https://geany.org/
https://www.mozilla.org/en-US/firefox/new/

<head>

<meta charset="utf-8">

<title>My first HTML file</title>
</head>

In your text editor you can turn syntax highlighting on or off
somewhere in the menus or options. To be honest, you don’t
neccessarily need it if you don’t want it and can just have all your
code displayed in a single color and regular text. However, many
programmers appreciate especially the color highlighting of code,
as it makes it easier to see which parts of the code are, for
example, certain keywords, comments, or text displayed later in
the browser. It can also be an aid to avoiding errors when typing
code: if you type in code and it is not colored as it normally would
be, it may be a sign that you have written a small spelling error in
that part of the code.

Each text editor has its own color palette specifying which parts of
the code are displayed with which color, and some text editors
even let the user choose from a list which color palettes to use.
Maybe the colors in your text editor are a little different than the
colors used here in the book, but please don’t be bothered by that.
The important thing is not the colors, but the code itself.

Where to save your files

Actually, you can store the programs and files that you write using
this book anywhere you like all across your computer. But to be
able to find your files when you need them in an easy way, a
suggestion would be that you create in your home directory, e.g. in
the folder Documents a folder named JS only for the programs of
this book and store there everything described here in the book,
and maybe your own programming projects, too. This way, there
will be no frustration when you need that one file you spent so

long and effort writing, but now can’t remember where you saved
it on your PC. And if you really want to play it safe, it may be a
good idea to sometimes save your programming folder on an
external device like a USB flash drive as a kind of emergency
backup (...because many computers somehow are able to sense
when a human programmer needs the data stored on them most
urgently and will have a hard disk crash at the exact moment
when that programmer wants to access it).

Basic structure of HTML files

What is this "HTML" stuff anyway?

When you surf the Internet with your browser, the web pages are
usually displayed in the form of HTML (HyperText Markup
Language) files. Actually, if you only want to put some text on the
net, you could just use a plain text file. (A surprising number of
files, by the way, are put on the Internet as such simple text files,
because they are easy to use and can be opened and read by a vast
number of different kinds of devices). Basically, an HTML file is
nothing more than a text file that contains other information
besides the actual text, such as what background color to use,
where in the text to put which photo, and so on.

So with HTML, simply said, "text is displayed nicely". Such HTML
pages are usually only static, i.e. they do not react to user input or
otherwise change during their use. For this purpose JavaScript, for
example, is used within a HTML page: this programming language
can be used to bring a wide variety of things to life, such as making
calculations, moving game characters in a video game, etc.

If you really want to be extremely pedantic, web
pages are rendered nicely using a combination of
HTML and so called "CSS" (Cascading Style Sheets).

First, let’s start by using HTML to create a simple but nice looking
web page. In the next book, we will then move on to enriching
such HTML pages with JavaScript and thus creating small so-called
"apps" (short form for Application software) from it.

Start your text editor and write a first line of text:

Hello World!

10

Save this file and name it Hello.html. Please make sure that the
filename extension is .html and not .txt or something else.

You can now open this file in a browser like Firefox or any other
browser of your choice: either you start your browser and open
this file from there (use the menu item "Open file..." in your
browser). Another way to open the HTML file is in the file manager
of your computer like File explorer (on Windows), GNOME files or
Dolphin (Linux), or Finder (Mac): there you right-click on the file,
select "Open with..." and choose your browser. In your browser
you will see something similar to Figure 1.

[Users/sven/JS/Hello.html

G [file:yff{Users/sven/JS/Hello.ht Ty

Hello World!

Figure 1. Your first HTML file Hello.html in the browser

If you want to open the HTML file you created in
the text editor instead of the browser, it works in
the same way: Either you select the menu item

o "Open file..." in the text editor and select your
HTML file, or you right-click on the HTML file in
your file manager and select your text editor
under "Open with ...".

Ha! There it is, your first HTML file. Now you can copy this file and
send it to other people, and they can open and view it in their
browsers. Or you could upload this file to a web server and other
people can view it on the Internet (this is exactly the way

11

webpages usually work).

Note that every computer and every browser may display the
HTML file a bit differently: on one computer the font is somehow a
bit bigger, or with another browser the font looks somehow
different. This is quite normal, because not every computer and
browser is the same as the other.

But to be completely honest with you, that file is actually not a real
HTML file ... it’s just an ordinary text file that was simply given the
filename extension .html. So let’s turn our first fake HTML file into
areal one!

The following line must always appear at the beginning of an
HTML file:

<!DOCTYPE html>

This tells the browser that this is not an ordinary text file, but a
real HTML file. Then follow two more so called tags to indicate
where in the file the HTML code begins and where it ends:

<!DOCTYPE html>
<html>
</html>

Between the <html> and </html> tags you will write your HTML
code. You could say that the <html> tag is the "opening tag", and
</html> is the "closing tag". (Please note that closing tags always
have that / character!) You will find this kind of opening and
closing tags in other places in similar form when writing HTML.
Always be careful with these tags that you don’t forget the closing
tag! Sometimes programmers write an opening tag, write more
code, and then forget to add the closing tag at the end. An advice

12

would be that when you write an opening tag, always write the
closing tag at the same time as well.

Within the two html tags there are two more tag-pairs, namely
head tags and body tags:

<!DOCTYPE html>
<html>
<head>
</head>
<body>
</body>
</html>

Between the opening and closing <body> tags you write the text you
want to be displayed in the Browser. For example, here we would
write our "Hello World!" text. "Okay, but what are the <head> tags
for?" Between these tags you, for example, write some information
that is used by Internet search engines or the title of your HTML

page.

Our "Hello World!" example would be as follows:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>My first HTML file</title>
</head>
<body>
Hello World!
</body>
</html>

The line <meta charset="utf-8"> in the head just tells the browser

13

what character encoding it should use. If you aren’t using foreign
languages that require rare special characters, you should always
be fine with "utf-8" which covers most of the common languages
used in the world.

The title will be displayed in the browser in the header bar or in
the tab.

Maybe you are wondering why the different parts of the code are
indented? Actually, you don’t have to indent anything when
writing HTML, you can start everything at the very left margin.
However, indenting helps to quickly identify which things are
parts and subparts of what tags. For example, here in the example,
it’s immediately obvious that the title is part of the head. This book
uses 4 spaces as one indentation level in each of the codes. So in
the example code, the head tags are indented with 4 spaces, the
title is indented with 8 spaces, and so on. You can use as many
spaces as you like if you too want to use indentation; an important
advice would be to keep it constant and not use different numbers
of spaces in your indentations in the same file. This could quickly
become confusing. And please don’t worry: the browser doesn’t
care if or how many spaces were used at the beginning of a line for
indentation - it simply overlooks them and is only interested in the
actual HTML code.

Just as it doesn’t matter how many spaces you use at the beginning
of your lines, it doesn’t matter how many blank lines you use
between your code lines. You could write one or more blank lines
between your code lines and the result in the browser would
always be the same:

<!DOCTYPE html>
<htm1>

<head>

14

<meta charset="utf-8">
<title>My first HTML file</title>

</head>

<body>
Hello World!
</body>

</html>

Maybe with some space between the lines it’s somehow easier to
read for you? Why don’t you try it yourself and insert some blank
lines between your code lines in your example file, see the result
and choose whatever fits you best.

This book will continue to use 4 spaces for
o indentation and relatively few blank lines in the
code.

So now please write the code of the new example with your text
editor and save this file as Hello_2.html. If you copied everything
correctly and open this - now real! - HTML file in your browser,
you should get something similar as in Figure 2.

15

My first HTML file X

C [file:yffusers/sven/JS/Hello_2.! ¥

Hello World!

Figure 2. The (now real) HTML file Hello_2.html in the browser

"Well, this looks ... just the same as our first fake HTML file!?" Okay,
for now there isn’t much difference in the looks between a regular
text file and our HTML file, but from now on we can use other
HTML tags in our real file to make it look better, for example make
the text bigger, choose colors and so on!

Empty HTML file

By the way, it is not necessary that you now learn by heart how the
basic structure of an HTML file exactly looks. To make it easier for
you, you can save this structure as an "empty HTML file" on your
computer and when you want to write other HTML files in the
future, you can always use this empty file as a template. The
following would be such an example file named empty.html:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>empty html</title>
</head>
<body>
</body>

16

</html>

17

HTML formatting

Let’s go ahead and beautify a regular text piece by piece with the
various tools HTML offers. And as mentioned earlier, this book
doesn’t go through all the last details of HTML formatting, but only
the most important and common things that you might need in
your daily life.

Paragraphs & line breaks

A little surprise awaits the one who enters a text with several
sentences, line breaks and blank lines. Try it yourself and enter the
following HTML code into your text editor:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<title>Linebreak example</title>
</head>
<body>
This is the first sentence.
This is the second sentence.
This is the third sentence.
</body>
</html>

Saved as an HTML file (let’s name this file Linebreak Test1.html)
and displayed in the browser, it will look like Figure 3.

18

[) Linebreak example X +

7 C @ [fileyf/Users/sven/JS/Linebrea ¥

This is the first sentence. This is the second sentence. This is the third sentence.

Figure 3. Regular text displayed in the file Linebreak_Test1.html

"Huh? In the HTML file every sentence is on its own line with empty
lines in between, but in the browser, all sentences are on a single
line?" Yup, that’s exactly what had been described a few pages
earlier: the browser doesn’t care about spaces and blank lines at
all, it will only display the "written" text. This means that you could
write hundreds of blank lines between the text lines - the browser
will only display the "written" text. It sometimes has its
advantages, but what should you do if you want to write a
sentence on a new line or have a blank line between certain
sentences? Well, you’ll have to tell the browser where it should
insert line breaks, and there is actually more than one way to do
that. One way is to use paragraphs. You simply write a tag in your
text where each paragraph begins and where it ends. The browser
then inserts line breaks between the paragraphs. The opening tag
for a paragraph is <p>, and the closing tag is </p>. Let’s make it so
that in the previous example, the first two sentences belong to one
paragraph, and the third sentence belongs to the next paragraph.
The code would then look like this:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<title>Linebreak example 2</title>
</head>

19

<body>
<p>This is the first sentence.

This is the second sentence.</p>
<p>This is the third sentence.</p>

</body>
</html>

Saved as Linebreak_Test2.html, it will look like Figure 4 in the
browser.

Linebreak example 2

G [fileyf//Users/sven/JS/Linebrez Ty

This is the first sentence. This is the second sentence.

This is the third sentence.

Figure 4. Two text paragraphs in Linebreak_Test2.html

If you view an HTML file in the browser, then
change something in this HTML file with your text
editor and save it, and then go back to the
o browser, you may not see the changes you just
made: the browser first has to load the new
version of the file. You can do this quite easily by
clicking the "reload” button in the browser.

Another way to make a line break is to insert the line break tag

. Please note that there is no closing tag to
; you could say
that
 is a "stand alone tag". So inside the first paragraph in the

20

previous example you could insert
 after the first sentence to
let the browser do a line break there:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Linebreak example 3</title>
</head>
<body>
<p>This is the first sentence.

This is the second sentence.</p>

<p>This is the third sentence.</p>
</body>
</html>

The result will look like Figure 5.

Linebreak example 3 X

G [file:;f//Users/sven/JS/Linebrea Ty

This is the first sentence.
This is the second sentence.

This is the third sentence.

Figure 5. A line break inside the first paragraph with

"Wait, there is no blank line between the first and the second
sentence! There is a blank line between the second and the third

21

sentence, though.” This is because the browser not only inserts a
line break at the end of a paragraph, it also inserts a blank line
between paragraphs. Now, what could you do to insert a blank line
between the first and the second sentence, that is, within the first
paragraph? Well, you could insert yet another
 tag:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Linebreak example 4</title>
</head>
<body>
<p>This is the first sentence.

This is the second sentence.</p>

<p>This is the third sentence.</p>
</body>
</html>

Now it should look like in Figure 6. Please be aware that excessive
insertion of too many consecutive
 tags sometimes is
considered bad style and instead paragraph tags should be used.
Please decide for yourself what suits you best.

22

Linebreak example 4 X

C [file:f/users/sven/JS/Linebrez ¥

This is the first sentence.

This is the second sentence.

This is the third sentence.

Figure 6. Blank lines between every sentence

Bold, Italics & Co.

The "regular" text without any formatting is displayed in an HTML
file exactly as it is displayed in an ordinary text file: all letters have
the same font size and style. Fortunately there are various tools to
change both font sizes and styles of some parts of the text.

Bold

If you want to display certain words as bold text, just insert the tag
 before the word where you want the bold print to start.
Where you want the bold text to end, insert the closing tag
:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Bold text</title>
</head>
<body>

23

<p>I want these three words
displayed bold.</p>
</body>
</html>

Saved inside the body of a HTML file it will look like Figure 7.

Linebreak example 4 X +

C [file:f/Users/sven/JS/Bold_Te: ¥

I want these three words displayed bold.

Figure 7. If you look closely you can recognize the bold text

Italics

Just as you did with the bold text, you can use italics for certain
parts of the text. Use the tags and (short for "emphasis")
and something similar like Figure 8 should be the result:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Italics text</title>
</head>
<body>
<p>Now let's make these words
italics.</p>
</body>

24

</html>

[Italics text X +

C [file:fjUsers/sven/JS[italics_Tc ¥y >» =

Now let's make these words italics.

Figure 8. Italics in action

Combined formatting tags

What’s better than bold or italics? Well of course, bold and italics
combined together! You can combine different tags and it will look

like in Figure 9:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Bold italics text</title>
</head>
<body>
<p>Combining bold &
italics text.</p>
</body>
</html>

Bold italics text X

C [file:yffusers/sven/JS/BoldItalic ¢y

Combining bold & italics text.

Figure 9. Bolded italics (...or italicized bolds?)

Please make sure that you always write a tag pair inside another
tag pair when combining tags, i.e. don’t mix up the order of the
closing tags. The following example would be wrong, because the
order of the closing tags does not match the order of the opening
tags:

some text

It should be:

some text

This way the tag pair is fully inside the tag pair.

...and even some more!

There are a quite a few tags that can be used to format text in
HTML files. Here is a small overview of the most common tags. Try
them out yourself and maybe even combine some of them:

Opening tag Closing tag Formatting

26

 bold

 italics
<mark> </mark> marked text
<small> </small> smaller text
 subscript
 superscript

Headings

The main part of an HTML page is mostly regular text, but if
everything would be regular text only, it could look cluttered and
kind of boring. To separate different parts of the text and to
emphasize things, headings can be used. In newspapers, thick
headings with large characters are used to introduce the text
below, and smaller subheadings between paragraphs help to
divide the text into different sections and give the reader a general
overview. (You can also find quite a few different sized headings in
this book).

Heading tags in HTML work similar to the formatting tags we used
earlier. To tell the browser where you want your heading to begin,
use the opening tag <h1>. The closing tag is </h1>. If written
correctly, you should see something like in Figure 10:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Heading 1</title>
</head>
<body>
<h1>My BIG heading</h1>
<p>This is just some regular text.</p>

27

</body>
</html>

Heading 1 X

G [fileyff/Users/sven/JS/Heading Ty

My BIG heading

This is just some regular text.

Figure 10. A heading and some regular text below

To write slightly smaller subheadings, just use the smaller variant
called <h2> instead of <h1> like in Figure 11:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<title>Heading 2</title>
</head>
<body>
<h1>My BIG heading</h1>
<h2>And a little bit smaller heading 2</h2>
<p>This is just some regular text.</p>
</body>
</html>

28

Heading 2 X

C [file:yffusers/sven/JS/Heading ¥

My BIG heading

And a little bit smaller heading 2

This is just some regular text.

e ———————————————————————

Figure 11. Heading, subheading and regular text

You can make even smaller headings with <h3>. "Wait, does that
mean there also are <h4> and <h5>?" Yes. "And <h6> too?" Yes. "And
<h7>?" No. It only goes down to <h6>. Please don’t be disappointed:
in a standard HTML file, there is not much visual difference
between <h4>, <h5> and <h6>. Here is a short comparison of the
different headings. The associated browser screenshot is Figure
12:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Heading comparison</title>
</head>
<body>
<h1>Heading h1</h1>
<h2>Heading h2</h2>
<h3>Heading h3</h3>
<h4>Heading h4</h4>
<h5>Heading h5</h5>

29

<h6>Heading h6</h6>
<p>Regular text</p>
</body>
</html>

Heading comparison X

G [file:yff{Users/sven/JS/Headline Ty

Heading h1

Heading h2
Heading h3
Heading h4

Heading h5

Heading h6

Regular text

N ———————————————————

Figure 12. We’ve got so many headings, they’ll blot out the sun! (Hidden
movie reference No.5)

Try it out yourself!

To try out what you have learned so far, here is a small task for
you: Create a small, fake newspaper report as an HTML page. Use a
headline, regular text and sub-headings. You can see a small
example at Figure 13.

30

You can choose the topic of this newspaper article freely: write
about a real event, or make something up. Just make sure that you
don’t write something about other people or things in a way that
could hurt anybody’s feelings. Otherwise, please let your
journalistic imagination run wild ;-).

Chili News 3 +

C [file:///Users/sven/JS/News.html B <%

Champions - 10 years in a row

The champion of the German soccer league Bundesliga in the 2021/22 season is
the FC Bayern Munich. Just like last year. And the year before. And the year
before that. And ... heck: For the past 10 years, the championship celebration
has been held in just one city in Germany. This year, too, the Marienplatz in
front of the city hall in Munich's venerable city center will be bathed entirely in
the club's red colors as tens of thousands of fans will gather there to celebrate
their team.

The world's most boring soccer league

The Bavarian club's dominance logically delights Munich's fans - but for the
rest of Germany, for the past decade, it's only been all about "Who's going to
finish second this year?" Unfortunately, that doesn't make it all that interesting
for many soccer fans to watch the German league.

Success through shady means?

Rumors that the FC Bayern partly is financed by means that are not entirely
legal have been around for quite some time. The fact that the club's president
was sentenced to several years in prison for tax evasion in 2014 doesn't exactly
make these rumors fade away either ...

N ——————————————————————————

Figure 13. The latest issue of the world famous Chili News

Colors

Let’s bring some color into our HTML! To color any text, you just
need to add the following code:

31

style = "color: Name-of-the-color;"

You have to insert this code into the opening tag of the element you
want the color to be changed, and write a real color name instead
of Name-of-the-color. For example, the heading’s color in Figure 14
will be red:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<title>Colors 1</title>
</head>
<body>
<h1 style = "color: Red;">My BIG heading</h1>
<h2>And a little bit smaller heading 2</h2>
<p>This is just some regular text.</p>
</body>
</html>

32

Colors 1 X

C [file:yffusers/sven/JS/Colors_1 ¥

My BIG heading

And a little bit smaller heading 2

This is just some regular text.

N ———————————————

Figure 14. The heading now in red

Let’s try it out and use some different colors. The basic color
names like Red, Blue, Green or Yellow can be used even with ancient
browsers. But a bit more modern browsers are able to display a
whole bunch of other colors with fancy names like Blanchedalmond,
Cornsilk, Dodgerblue or Firebrick. Down here are two lists: one
with examples of the "o0ld" color names even for ancient browsers,
and another one with some additional color names for slightly
more modern browsers. There are other ways to display colors in
browsers, for example with number codes, but it is much easier to
use their names instead. And a HTML code using the color Tomato
looks so much tastier than specifying this color with the code
#ff6347, doesn’t it?

* Basic color names: Black, White, Blue, Green, Maroon, Red,
Purple, Teal, Yellow

e Modern color names: Blanchedalmond, Cornsilk, Darkblue,
Deeppink, Dodgerblue, Goldenrod, Grey, Lightgreen,
Midnightblue, Orange, Peru, Saddlebrown, Tomato

33

For a complete list of HTML color names please
o see this Wikipedia page: https://en.wikipedia.org/
wiki/Web_colors#HTML_color names

What are you waiting for? Color it up like crazy!

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Colors 2</title>
</head>
<body>
<h1 style = "color: Red;">My BIG heading</h1>
<h2 style = "color: Blue;">And a smaller heading
2</h2>
<p style = "color: Orange;">This is just some
reqular text.</p>
<p style = "color: Saddlebrown;">Yet another
paragraph.</p>
</body>
</html>

34

https://en.wikipedia.org/wiki/Web_colors#HTML_color_names
https://en.wikipedia.org/wiki/Web_colors#HTML_color_names

Colors 2 X

C [file:yf/users/sven/JS/Colors_> ¥

My BIG heading

And a smaller heading 2

Yet another paragraph.

e ———————————————

Figure 15. You never can have enough colors...

In the same way that text can be colored, the background of the
text can also be colored. The code to use is:

style = "background-color: Name-of-the-color;"

Here Name-of-the-color has to be replaced with a real color name.
This code has to be inserted into the opening tag just like we did
with the text color. You can even combine these two color
specifications - one for the text color and one for the background-
color. Just make sure that there is a semicolon ; between each
color specification. In the following example, a semicolon is placed
immediately after the color specification Blue of the <h2> heading,
separating it from the background-color specification that is
following.

To change the background-color of the whole page, just put this
specification inside the opening <html> tag or <body> tag, like seen
in Figure 16:

35

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Colors 3</title>
</head>
<body style = "background-color: Tomato;">
<h1 style = "color: Red;">My BIG heading</h1>
<h2 style = "color: Blue; background-color:
Peru;">Another h2</h2>
<p style = "color: Orange;">This is just some
reqular text.</p>
<p style = "color: Saddlebrown;">Yet another
paragraph.</p>
</body>
</html>

Colors 3 X

G [file:f/Users/sven/JS/Colors_= ¥

Figure 16. Color explosion in the browser

However, with Figure 16 you can also clearly see that sometimes

36

it’s not too good an idea to use all the available colors of the palette
at once in a HTML page. You have to experiment a bit and see
which colors go well together, or which colors combined are not
really readable. Sometimes just a little less coloring could get
overall nicer results.

Font

You probably already guessed it: just like you can change the
colors of your text, you can also change the font of your text. You
have a super cool font on your PC and want to use it for your
HTML page? No problem, just write in your HTML code that this
font should be used. But! That you have this super cool font
installed on your PC does not mean that all other people have this
super cool font on their device too! Of course, there are ways and
means to code your HTML page in such a way that the browser of
every user of your HTML page automatically downloads desired
fonts from the Internet, but very few users are really happy about
fonts being downloaded to their devices every time your HTML
page is loaded. (Note also that a not-small amount of users have
their browsers set to not download new fonts from the Internet,
even if an HTML page explicitly requests it.)

And even if some browsers really download the font you want, it
doesn’t mean that this font will look as good on their devices as it
does on your PC. There is a huge difference between how an HTML
page looks on a large computer screen, for example, and how the
same page looks on a small smartphone screen ... that’s why every
device has its own special set of pre-installed fonts.

My advice would therefore be not to require a specific font, but
only to specify which general font-family should be used. This way
you can be sure that your HTML page looks roughly the same on
every kind of device and still looks good.

37

If you are absolutely desperate to use a special,
super cool font for the title of your HTML page,
for example, it might be better and easier to

o display an image of the text that uses this font
instead of letting users download the entire font.
How to display images in HTML pages will be
explained a few pages later in the book.

Generally speaking, there are three general font-families:

* Serif: The font-family used in this book. This font-family has
additional small strokes on most letters. Print media such as
newspapers like to use it.

» Sans-serif: This font family has no additional small strokes on
its letters. Most computers and smartphones use it to display
their menus and dialogs.

* Monospace: Here, each letter takes up just as much horizontal
space as every other letter. The HTML code in this book is
displayed with a monospace font-family.

You can specify which font-family to use, similar to how colors are
specified, by inserting the following code into an opening tag:

style = "font-family: Name-of-the-font-family;"

Replace Name-of-the-font-family with serif, sans-serif or
monospace to get a result like Figure 17. In general, it is better not to
use too many different fonts or font-families mixed wildly
throughout a HTML page - it will look strange and cluttered.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">

38

<title>Font-families</title>
</head>
<body>
<h1 style
heading</h1>
<h1 style
heading</h1>
<h1 style = "font-family: monospace;">My
monospace heading</h1>
</body>
</html>

"font-family: serif;">My serif

"font-family: sans-serif;">My sans

E] Font-families

C [fileyfj/users/sven/Downl ¥3 53 »

My serif heading

My sans heading

My monospace heading
k‘llIlllIllIlIlllIIllIlIlllIIllllllllllllllllllllll!'J

Figure 17. The honorable three font-families

If you don’t plan to change the fonts of your HTML page often, it
would be an idea to specify the font inside the opening <html> tag
or <body> tag (the same way we did with the background color).
You can also do this in combination, like for example:

<!DOCTYPE html>

39

<html>
<head>
<meta charset="utf-8">
<title>(code example)</title>
</head>

<body style = "background-color: Peru; font-family:
sans-serif;">

</body>
</html>

When specifying different styles, please make sure that there is a
semicolon ; between each style specification. In the previous
example, a semicolon is placed immediately after the background-
color specification Peru, separating it from the font-family
specification that is following.

40

Links

The great thing about HTML pages is that you can click on links
and be redirected immediately. The even greater thing is that links
can be created quite easily. First you write the opening link tag <a>,
and right after that you write the corresponding closing tag :

<a>

Within the opening tag you add the code href = " ". Inside the
quotes of this code you then write the net address you want to link
to.

Then, between the two link tags you write the text which should be
clicked as a link on the HTML page. This can be the same text as
the link address, but it can also be something completely different:

Link to
Wikipedia

In many browsers the link is then underlined and displayed in a
different color than the regular text, as can be seen for example in
Figure 18:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Link example</title>
</head>

41

<body>
<p>This is just reqular text. Nothing
special.</p>
<p>But here we've got a <a href =
"https://en.wikipedia.org">Link to Wikipedia, how
cool is that!</p>
</body>
</html>

Link example X —+

C [file:fjUsers/sven/JS/Link.html ¥¢ >

This is just regular text. Nothing special.

But here we've got a Link to Wikipedia, how cool is that!

Figure 18. A link to unlimited knowledge

Links to locations on the same page

You can link not only to other pages on the Internet, but also to
places on the same page. For example, if you have a fairly large
website with a lot of text - similar to a newspaper website - you can
create a kind of "table of contents" at the top of your website. If
you then click on these individual links, you will jump to the
corresponding place further down on the website.

Creating these links on the same page actually works in exactly the
same way as creating links to other websites - you just have to
specify an additional target point on the website to which you
want to jump, so to speak, when you click on a link. This target

42

point is called an "anchor".

Let’s create a small example page with two links and two anchors!
We’ll start with a very simple page containing two headlines and
two paragraphs of text:

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Anchor</title>
</head>
<body>
<h1>Headline No.1</h1>
<p>...some text...</p>

<h1>Headline No.2</h1>
<p>...some more text...</p>
</body>
</html>

Now we want to insert two links at the top of this website: one link
per headline. If you click on the first link, you will jump to the first
headline. If you click on the second link, you jump to the second
headline.

To do this, we first need to add an anchor to each headline so that
the browser knows where to jump to when the link is clicked.

An anchor is quite simple to create. You simply add a so called "id"
inside the opening tag <h1> of the headline:

<h1 id = "MyAnchor1">Headline No.1</h1>

You can give this anchor id any name you’d like. In the example it

43

is simply named "MyAnchor1". The second headline gets its own
anchor id as well, so the website code will look like this:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Anchor</title>
</head>
<body>
<h1 id = "MyAnchor1">Headline No.1</h1>
<p>...some text...</p>

<h1 id = "MyAnchor2">Headline No.2</h1>
<p>...some more text...</p>
</body>
</html>

You do not necessarily have to select a headline as
an anchor, but can actually insert your anchor
e anywhere you want on the website. However, the
website will be easier to use for the users if
concise parts of the website are selected as
anchors, such as headlines, images or similar.

Now only the actual links need to be inserted. In our example we
insert them at the top of the website. These links are created in the
same way as links to other webpages, with the only difference that
the respective anchor on the website is now specified as the target.
Please note that in the link an anchor as target has to be written
with a # character in front:

Click here to go to Headline
No.1

44

The text Click here to go to Headline No.1 is displayed on the
webpage and when being clicked, the browser will jump to
MyAnchor1 (the # sign meaning the anchor is somewehere on that
webpage).

The whole HTML code could look like the following, while in the
browser it will look like Figure 19:

<!DOCTYPE html>
<html>
<head>
<title>Anchor</title>
<meta charset="utf-8">
</head>
<body>
Click here to go to
Headline No.1

Click here to go to
Headline No.2

<h1 id = "MyAnchor1">Headline No.1</h1>
<p>...some text...</p>

<h1 id = "MyAnchor2">Headline No.2</h1>
<p>...some more text...</p>
</body>
</html>

45

ﬁ Anchor

C [fileyffjusers/svenfJS/An: ¥2 5] »

Click here to go to Headline No.1
Click here to go to Headline No.2

Headline No.1

...some text...

Headline No.2

...Some more text...

S ——————————————

Figure 19. Links (and anchors) on the same webpage

If you are using a fairly large computer monitor
and click on the links described above, there will
probably not be much movement: if the screen is
so large that the entire HTML page is already
displayed from the outset, then jumping to the

o HTML links on the same page will not be
noticeable. To really "jump" to the clicked links,
you would either have to use a smaller screen, or
simply write more text at the paragraphs where
we wrote ":--some text-:" and ":--some more
text--".

Links to other files

Linking to files basically works in the same way as linking to other
websites.

46

Let’s say you have a file called "MyData.pdf" that you want to link
to on your HTML page. If this PDF file is in exactly the same folder
as your HTML file, the link will look like this: Text-to-be-clicked . Inside the quotation
marks after href= the name of the file has to be written. The text
between the <a> and tags will be displayed in a special color
and also be underlined in the browser. If this underlined text is
clicked in the browser, the download of the file will start.

It could look like Figure 20:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Link example 2</title>
</head>
<body>
<p>Reqular text. Click
herel More regular text.</p>
</body>
</html>

Link example 2 X +

C [fileyfffusers/svenfJS/Lin ¥ 57 » =

Regular text. Click here! More regular text.

Figure 20. Linking to files is just as easy

If the file is not located in the same folder as your HTML file, but

47

for example in a subfolder called "MyFiles", you must adapt the
code accordingly:

<p>Regular text. Click
here! More regular text.</p>

This means that the folder "MyFiles" is in the same folder as your
HTML file, and inside that folder "MyFiles" the data to download is
located.

Of course you can also link to other files that are not located on
your computer but somewhere on the web. In such a case you
have to write the whole URL (i.e. the "internet adress" of that file)
into your code. For example, the download link to this textbook
would look like this:

<p>Reqgular text. C
lick here to download the book. More regqular
text.</p>

You can find a more detailed description of what
you should bear in mind when linking files and

o what the so called "folder hierarchy" is all about
in the chapter Sharing & uploading your HTML
files.

48

Images

Various images and graphics can be inserted into HTML pages. The
code for this is just a little bit more extensive than the code earlier
for the insertion of links, but also not really that much more
complicated.

To keep it simple and to make sure that on most devices and
browsers these images really can be displayed, it is a
recommendation to use only images in . jpg (sometimes written as
.jpeg) or .png formats. There are other image formats that may still
be displayed as well, but with the two image formats described
above you can be pretty sure that graphical browsers will be able
to display them without problems and without long loading times
almost no matter what device the user is using.

To insert an image into your HTML page, all you need to do is
inserting the tag into your HTML code. The tag is stand-
alone, i.e. there is no closing tag:

Inside the tag, in the simplest version, you then only need to
specify where this image is stored, using src (which stands for
"source"):

Inside the quotation marks you write the location of the image.
This could for example be an Internet address, but in many cases
the image is stored where the HTML file is stored. If the image is
stored together with your HTML file in the exact same folder, you
only need to specify the image name inside the quotation marks.

49

For example, the code to display an image named logo.png is:

A small example HTML page with a heading, a small image for the
logo and some text would be like the following as shown in Figure
21:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<title>Image example 1</title>
</head>
<body>
<h1>CHILI RULEZ!</h1>
<p></p>
<p>Welcome to my chili page.</p>
</body>
</html>

50

Image example 1 X

C (O file:/j{Users/sven/JS/image._

CHILI RULEZ!

Welcome to my chili page.

T ————————————————

Figure 21. Headline, some text and a monster chili

Whoa, that image is way too big, it’s even bigger than the heading!
It should have been a small logo and not a whole page chili attack.
Well, that’s because the browser usually displays images in their
original size. If you have a rather large image, this can become a
problem. One solution could be to reduce the size of the image
using an image editing software. Another, simpler solution would
be to specify in the HTML code how large the image should be
displayed. The code for this is

width = "Width-as-a-number"

51

if you want to specify the image width, or
height = "Height-as-a-number"

if you want to specify its height. You will have to replace Width-as-
a-number or Height-as-a-number with the preferred image size and
then simply write this code into the tag. The result will be
something like in Figure 22. The size of images in HTML pages is
usually specified using px (which stands for "pixel"), but there also
are other ways of specifying the size. For the sake of simplicity, px
is used throughout this book. Sometimes you have to experiment a
little bit and see what image sizes work best for your HTML page.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Image example 2</title>
</head>
<body>
<h1>CHILI RULEZ!</h1>
<p></p>
<p>Welcome to my chili page.</p>
</body>
</html>

Please pay attention here! With the formatting of
text we did before, several specifications were

o always separated by a semicolon ; . But now
within the tag, different specifications are
simply separated by a space.

32

Image example 2 X

C [file:fj/Users/sven/JS/image_

CHILI RULEZ!
J

Welcome to my chili page.

N —————————————

Figure 22. Now that size is more kind of a logo

And always remember: that’s how the HTML page is displayed on
your screen - different devices with smaller or bigger screens could
display the HTML page and its image with different dimensions.

You could store all images in exactly the same folder on your PC as
the HTML file, but if you have a lot of images it can quickly become
crowded. A good idea would be to create a subfolder in the folder
where the HTML file is stored, e.g. named images, and store all
images there. So if you saved your HMTL files in the folder]S, then
put all related images into the folder images.

For example, if you have an image named logo.png in the
subfolder images, the specification in the HTML code would be the
following:

The location of images is always specified relative to the location of
the HTML page. A little example to explain this: In your folder JS,
where your HTML file is located, you created a subfolder named

33

stuff where you want to put all the things that will be used by
your HTML file. And inside this stuff folder you have created yet
another subfolder named pics where you want to save all your
images. The HTML code to display an image from this "sub-
subfolder" would look like the following:

Somehow the chili logo on the example HTML page still doesn’t
look really good ... the logo is quite far away from the heading.
Now what could be done to display the logo in the same line as the
heading? Think for yourself if you can find an answer, you have 5
seconds. 5, 4, 3, 2, 1, time up! Okay, one possibility would be to
write the tag between the two <h1> tags. And why only one
logo? Let’s add two logos right away - of course with reduced sizes
like in Figure 23:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Image example 3</title>
</head>
<body>
<h1> CHILI
RULEZ! </h1>
<p>Welcome to my chili page.</p>
</body>
</html>

54

Image example 3 X

C [file:fj/Users/sven/JS/image_

« CHILI RULEZ! »

Welcome to my chili page.

Figure 23. That heading looks hot (...Sorry, that pun was really cheap)

Image border and alt name

You can do some more with images. How about a nice border
around the image for example? That’s quite easy, the code for it is

border = "Thickness-as-a-number"

where instead of Thickness-as-a-number you specify the desired
thickness of the border with px. And while we are at it: with the
code

alt = "Text-you-want-for-alt"

a description for the image can be provided replacing Text-you-
want-for-alt with some text. This description is normally not
displayed in the browser. "Hmm, if this description is not displayed,
why do you need it at all?" If there are problems loading that
image, this alternative description will instead be displayed.
Browsers that do not display graphics will also display this

55

description. And browsers for people with visual impairment can
use it to describe it to its users. It has quite its advantages to use
this kind of image description.

Let’s extend the example from before a bit further and add an
image with border and some alternative descriptions for all the
images used like in Figure 24:

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8">
<title>Image example 4</title>
</head>
<body>

<h1> <img src = "logo.png" width = "25px" alt =
"Chili logo"> CHILI RULEZ! <img src = "logo.png" width =
"25px" alt = "Chili logo"></h1>

<p>Welcome to my chili page.</p>

<p><img src = "images/bowl.png" width ="100px"
alt="Chili bowl" border="5px"></p>

<p>A selection of the best chili receipts on the
planet.</p>

</body>

</html>

56

Image example 4 X

C [file:fj/Users/sven/JS/image_

« CHILI RULEZ! »

Welcome to my chili page.

'\
.
)

A selection of the best chili receipts on the planet.

Figure 24. Border around an image

Try it out yourself!

Now it’s time to show your skills. Make an HTML page about a
hobby of your choice: sports, food, vehicles ... whatever you like.
On that page, describe what your chosen hobby is about and add
one or even more pictures to explain. Also make a heading, maybe
even with a logo? And paint everything in matching (but still
readable!) colors.

57

Styling the body

All HTML examples until now had their content on the left side.
But this can be changed. One possibility would be to center the
entire page content. To do this, you could for example simply
insert the code

style = "text-align: center;"
into the opening <body> tag, as seen in Figure 25:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Center test</title>

</head>
<body style = "text-align: center;">
<h1>Heading</h1>

<p>Regular text.</p>
<p><img src = "images/bowl.png" width ="100px"
alt="Wrap"></p>
</body>
</html>

38

Center test X

C [file:yf/users/sven/JS/Centerec ¥y

Heading

Regular text.

&

Figure 25. Everything centered

However, if you have a lot of regular text on the page, it could get a
bit awkward to read when everything is centered in the middle.
You would have to somehow find a way to still have the page
content left-aligned, but not quite so close to the left page margin.
One way to do this would be to "shrink" the <body> just a bit.

To illustrate this in an easy to understand way, first we specify two
different background colors for the opening <html> tag and the
opening <body> tag respectively:

<!DOCTYPE html>
<html style="background-color: Tomato;">
<head>
<meta charset="utf-8">
<title>Center test 2</title>

</head>
<body style="background-color: White;">
<h1>Heading</h1>

39

<p>Regular text.</p>
<p><img src = "images/wrap.png" width ="100px"
alt="Wrap"></p>
</body>
</html>

Center test 2 X

C [file:y/Users/sven/JS/Centerec ¥

Figure 26. <html> and <body> with different background-colors

In Figure 26 you can see exactly where the border between <html>
and <body> is on the HTML page. Now you only have to make the
<body> part a bit smaller horizontally. This can be done by
specifying the width in the opening <body> tag. For this, width can
be used to specify the width of the element in question. You could
specify the size of this width with px, e.g.

<body style="width: 55@0px;">

and the <body> would then always be exactly 550 pixels wide, no

60

matter how big the screen or browser window of the used device
is. If you specify the size with % instead of px, for example

<body style="width: 75%;">

then the width of the <body> will be just that much percentage of
the browser window. For example, if you specify

<body style="width: 50%;">

the <body> will be exactly half the size of the browser window’s
width. Feel free to experiment a bit with a higher or lower
percentage and see how the HTML page will look like, maybe
something similar to Figure 27:

<!DOCTYPE html>
<html style="background-color: Tomato;">
<head>
<meta charset="utf-8">
<title>Center test 3</title>

</head>
<body style="background-color: White; width: 75%;">
<h1>Heading</h1>

<p>Regular text.</p>
<p><img src = "images/wrap.png" width ="100px"
alt="Wrap"></p>
</body>
</html>

61

Center test 3 X

C [file:yf/users/sven/JS/Centerec ¥y

Figure 27. The <body> now shrinked horizontally

Hmm, at Figure 27 you can now see that the <body> has become
smaller horizontally, but it is still all the way to the left. One way to
bring the <body> to the center of the HTML page is the following
trick: add the code

margin: 25px auto

to the opening <body> tag. The margin code specifies the space
outside around the respective element and actually needs two size
specifications, e.g.

<body style="margin: 25px 50px;">

The first size specifier indicates how much space to add at the top
and bottom, the second size specifier indicates the space on the left

62

and right. So with the code example above you would have 25
pixels of space above and below the <body>, and 50 pixels each on
the left and right. And here comes the trick: if you write auto
instead of the second size specification, all horizontal space on the
sides of the <body> will automatically be distributed evenly left and
right, no matter what size the browser window has, like in Figure
28:

<!DOCTYPE html>
<html style="background-color: Tomato;">
<head>
<meta charset="utf-8">
<title>Center test 4</title>
</head>
<body style="background-color: White; width: 75%;
margin: 25px auto;">
<h1>Heading</h1>
<p>Regular text.</p>
<p><img src = "images/wrap.png" width ="100px"
alt="Wrap"></p>
</body>
</html>

63

Center test 4 X

C [file:yf/users/sven/JS/Centerec ¥y

Figure 28. Now we got the <body> centered

Okay, now the body itself is in the center, but there is one not so
nice thing left: the text is a little bit too close to the left body
margin. This really stands out when the backgroud-colors of <htm1>
and <body> are different. But don’t worry, there is a code for that
too. With

padding: 15px

you can add some space between the content and the inner
margin. Or in other words: while the code margin we were using in
the example above specifies the distance outside around an
element, the code padding specifies the distance inside an element to
the element border.

Please experiment yourself, if more or less than 15px will give you
a better result like in Figure 29:

64

<!DOCTYPE html>
<html style="background-color: Tomato;">
<head>
<meta charset="utf-8">
<title>Center test 5</title>
</head>
<body style="background-color: White; width: 75%;
margin: 25px auto; padding: 15px;">
<h1>Heading</h1>
<p>Regular text.</p>
<p><img src = "images/wrap.png" width ="100px"
alt="Wrap"></p>
</body>
</html>

Center test 5 X

G [file:ff{Users/sven/JS/Centere: Ty

Heading

Regular text.

Figure 29. Padding inside the <body>

65

Now, if you really wanted to nitpick, you could say that the
heading would look better if it were in the middle and not at the
left margin. And the image should be in the middle too. Doing that
is actually pretty easy, can you figure out how?

One way to center the heading would be to insert the code

style = "text-align: center;"

into the opening <h1> tag. And to center the image, you could do
exactly the same: you only have to insert that code into the
opening tag of the <p> Paragraph the image is located in, as seen in
Figure 30:

<IDOCTYPE html>
<html style="background-color: Tomato;">
<head>
<meta charset="utf-8">
<title>Center test 6</title>
</head>
<body style="background-color: White; width: 75%;
margin: 25px auto; padding: 15px">
<h1 style = "text-align: center;">Heading</h1>
<p>Regular text.</p>
<p style = "text-align: center;"><img src =
"images/wrap.png" width ="100px" alt="Wrap"></p>
</body>
</html>

66

Center test 6 X

C [file:yf/users/sven/JS/Centerec ¥y

Heading

Regular text.

Figure 30. Heading and image centered, while the regular text is left-
aligned

Body border & shadow

In an example earlier in this book, a border was created around an
image. Not only around images, but around the body you can
create a border, too. The codes for this are similar, but please be
careful: there are small differences here! To create a 5 pixel wide
border around an image like earlier in this book, the code is

border ="5px"

To create a 5 pixel wide border around the body, the code is

67

border: 5px solid Black;

This code is inserted added to the style part inside the opening
body tag. 5px specifies the width of the border in pixels. Solid
simply means that the border should not be transparent. And you
probably already guessed it: Black specifies the color of the border.
Here at Figure 31 is an example:

68

<!DOCTYPE html>
<html style="background-color: Tomato;">
<head>
<meta charset="utf-8">
<title>Body border 1</title>
</head>
<body style="background-color: White; width: 75%;
margin: 25px auto; padding: 15px; border: 5px solid
Black; ">
<h1 style = "text-align: center;">Heading</h1>
<p>Regular text.</p>
</body>
</html>

Body border 1 X +

C [file:f/users/sven/JS/Bodybor ¥¥ >

Heading

Regular text.

Figure 31. Now the body has some nice border around it

Without further specifications, the border around the body has
normal, angular corners. But with a small code addition these
corners can be rounded. The code for this would be

border-radius: 25px;

Please experiment yourself how the radius of the rounded corners
changes if you specify a higher or lower number than the 25 pixels
in this example code. You can see the rounded border corners with
the size of 25 pixels in Figure 32:

<!DOCTYPE html>
<html style="background-color: Tomato;">
<head>
<meta charset="utf-8">
<title>Body border 2</title>
</head>
<body style="background-color: White; width: 75%;

69

margin: 25px auto; padding: 15px; border: 5px solid
Black; border-radius: 25px;">
<h1 style = "text-align: center;">Heading</h1>
<p>Regular text.</p>
</body>
</html>

Body border 2 X —+

G [file:f/Users/sven/JS/Bodybor ¥ »

Heading

Regular text.

Figure 32. Rounded corners give a softer look

And to make the body stand out a bit, a shadow can be added. The
code for this is

box-shadow: 10px 10px;

where the first pixel specification indicates the offset of the
shadow to the right, and the second indicates the offset down. So
for example the code

70

box-shadow: 30@px 5px;

would create a shadow that goes 30 pixels to the right and 5 pixels
down. You can see an example with a 10 pixel shadow in Figure
33:

<!DOCTYPE html>
<html style="background-color: Tomato;">
<head>
<meta charset="utf-8">
<title>Body border 3</title>
</head>
<body style="background-color: White; width: 75%;
margin: 25px auto; padding: 15px; border: 5px solid
Black; border-radius: 25px; box-shadow: 10px 10px;">
<h1 style = "text-align: center;">Heading</h1>
<p>Regular text.</p>
</body>
</html>

71

Body border 3 X

C [file:yffusers/sven/JS/Bodybor ¥

Heading

Regular text.

Figure 33. With a shadow added, the body seems to stands out

Horizontal line

To create a separator line on your HTML page, simply add the
standalone tag <hr> . This line can be anywhere, for example
between a heading and some text, before or after an image, or
between two paragraphs of regular text as in Figure 34:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Horizontal line 1</title>
</head>
<body>
<h1>Heading</h1>
<p>Some regular text.</p>
<hr>
<p>More regular text.</p>

72

</body>
</html>

Horizontal line 1 X

G [fileyfj/Users/sven/JS/Horizont Ty

Heading

Some regular text.

More regular text.

N ——————————

Figure 34. A horizontal line to separate stuff

Without further specification the horizontal line goes over the
whole width of the browser window. With the additional
specification

<hr width = 50%>

the width can be specified. Here in this example, the horizontal
line would be half the size of the browser window. If no other
changes to the style are specified, the horizontal line will be
centered, like in Figure 35. Please experiment by yourself how
other line widths will look:

<!DOCTYPE html>
<htm1>
<head>

73

<meta charset="utf-8">
<title>Horizontal line 1</title>
</head>
<body>
<h1>Heading</h1>
<p>Some regular text.</p>
<hr width = 50%>
<p>More regular text.</p>
</body>
</html>

Horizontal line 1 X

C [file:yffusers/sven/JS/Horizont ¥

Heading

Some regular text.

More regular text.

S ————————————————

Figure 35. The horizontal line size reduced

Lists

To create a list with multiple items, it doesn’t take too much new
coding. Creating lists basically works the same way we’ve been
creating normal paragraphs all along. With lists you just don’t start
each list item with the opening tag <p> but instead with <1i>
(which stands for "list item"). And what is the closing tag for a list
item? Exactly, it is </1i>. Only one additional part has to be added:

74

all the items of the list have to be inside the list tags and
(which stands for "unordered list").

As an example, let’s make a list of various ingredients needed for a
mild and noble gourmet dish, as in Figure 36:

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>list 1</title>

</head>
<body>
<p>Gourmet meal ingredients:</p>

Salt, pepper, some olive oil & water</1i>
Tomatoes</1i>

Large onion</1i>
Three or more (...better more!) cloves of
garlic</1i>
A bunch of Jalapeno chilies</1i>
Beans, lots of beans

</body>
</html>

75

List 1 X

C [file:yffusers/sven/JS/List_1.hti ¢y

Gourmet meal ingredients:

Salt, pepper, some olive oil & water

Tomatoes

Large onion

Three or more (...better more!) cloves of garlic
A bunch of Jalapeno chilies

¢ Beans, lots of beans

N ————————————————

Figure 36. A list for true gourmets

In the above code, if you enclose the list with the tags (which
stands for "ordered list") instead of the tags , you will get a
numbered list as in Figure 37:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>List 2</title>
</head>
<body>
<p>Gourmet meal ingredients:</p>

Salt, pepper, some olive oil & water</1li>
Tomatoes</1i>
Large onion</1i>
Three or more (...better more!) cloves of
garlic</1i>
<1i>A bunch of Jalapeno chilies</1li>
Beans, lots of beans</1li>

76

</body>
</html>

List 2

C [file:yf/Users/sven/JS/List_2.hi ¥

Gourmet meal ingredients:

1. Salt, pepper, some olive oil & water

2. Tomatoes

3. Large onion

4. Three or more (...better more!) cloves of garlic
5. A bunch of Jalapeno chilies

6. Beans, lots of beans

S ——————————————————

Figure 37. The same list, now numbered

That’s enough HTML for today

There is of course much more to HTML than has been covered so
far in this book. For absolute programming beginners, however,
this should be enough to be able to create attractive HTML pages,
and later, with a little JavaScript, some quite nice apps. If you want
to learn more about HTML, you should take a closer look at the
further mentioned teaching materials in the chapter Further
reading.

And lastly a hint that might be important for programming
beginners: even veteran programmers use Internet search engines
to look up how to write code or how to solve coding problems. In
fact, they do that very often. Very, very often! But this also means

77

that you don’t necessarily have to learn every last detail of a
programming language by heart. A rough overview of the
programming language is enough if you also know how to search
in textbooks or the Internet to solve your coding problems.

Try it out yourself!

As the final challenge of this book, the task is to create a "Wanted!"
poster like you might know from old cheesy movies. You can see
an example of this poster at Figure 38. Use regular text, headings,
lists and more of what has been learned so far. (Everything used in
the Figure 38 example has already been presented somewhere in
this book!) And as always, it’s best not to make this poster about
real people, as they may be unintentionally hurt by this.

78

Wanted

C [file:yf/users/sven/JS/Wanted. ¥

o

Halfgren Orkinson

‘Wanted for:

+ Breaking into king's castle
» Looting the royal refridgerator

™

* Pouring Extra Hot Chili Sauce** in king's underpants

Reward:

2$ or ballpen

-- See nearest police station for info --

Figure 38. A poster straight out of some cheesy movi

Here comes the HTML code, but before you read it you should first
try to create such a "Wanted!" poster with your own so far
acquired coding knowledge! After that you can always look at the
example code here in the book and see one (more) way how such a
page was created.

<!DOCTYPE html>

79

80

<html style="background-color: Peru;">
<head>
<meta charset="utf-8">
<title>Wanted</title>
</head>
<body style="background-color: Blanchedalmond; text-
align: center; width: 75%; margin: 25px auto; padding:
5px; border: 5px solid Black; box-shadow: 10px 10px;
border-radius: 25px;">

<h1 style="color: Red;">WANTED!</h1>
<img src="images/orc.jpg" width="250px"
border="5px" alt="Photo">
<h2>Halfgren Orkinson</h2>
<p>Wanted for:</p>

Breaking into king's castle</1li>
Looting the royal refridgerator</1i>
Pouring <i>Extra Hot Chili Sauce<sup>
TM</sup></i> in king's underpants</1i>

<hr width = 90%>
<h2>Reward:</h2>
<p>2$ or ballpen</p>
<p>-- See nearest police
station for info --</p>
</body>
</html>

Sharing & uploading your
HTML files

You now have a pretty solid basic knowledge of how to create
appealing HTML pages. If you want to show your HTML pages to
other people, you could of course show these on your own
computer. Another option would be to give other people a copy of
your HTML files. There are quite a few ways to do that:

You could just copy your files to a USB memory stick or any other
type of storage media and hand it over to other people who then
copy your files over to their devices. Or you could use the Internet
to send your HTML files to other people, for example as an email
attachement or using some sort of online file hosting service. No
matter which way you choose, there are some things you should
bear in mind:

If you only have a single HTML page without images that you want
to pass on, then you can simply copy and pass on just this one file.
However, if you use images or other files in your HTML page, then
you must somehow pass on these images together with the HTML
page. And you have to share the images in the same folder
hierarchy as you have them on your computer.

What sounds quite complicated is actually quite simple and logical:
Let’s assume, for example, that you have saved your HTML page in
a folder called "MyFiles". And you have saved your images in
another folder called "MyPictures", which is located in the
"MyFiles" folder. (You could also say that this folder "MyPictures" is
a so-called subfolder of "MyFiles").

If you now pass on your HTML files, you must ensure that this
folder hierarchy is retained. In our example, this means that the
folder "MyPictures" remains a sub-folder of "MyFiles" in the copy
that you want to pass on. This also means that you cannot save the

81

pictures anywhere else in the copy: When displaying your HTML
file, the browser searches for the images at the exact location
described in your HTML code. If the image folder or the images are
now in a different location in the copy, the browser does not know
where to find these images and will simply display an empty space
instead of the images. So always save your files in the same folder
hierarchy as you have them on your own computer.

The same also applies to your other files, for example
downloadable PDF files or HTML files you have written that you
link to each other (i.e. you write a link in one of your HTML files
that leads to another of your HTML files): Here, too, you must then
maintain the same folder hierarchy - otherwise clicking on a link
in the copy will result in an error message from the browser that
the linked file could not be found.

Your own homepage on the Internet

If you want to create your own homepage which should be
accessible at any time and from anyone on the Internet, it basically
works as described above for copying your HTML files. Now you
just don’t copy your files to a USB memory stick, but via the
Internet to a computer of the website hosting company that is
always switched on and connected to the Internet. (Sometimes
such an always-on and always-Internet-connected computer is
called a "server").

There are many different hosting offers: Some are free, but the
storage space you can get may be rather small and you may have
to allow advertising from the hosting company to be displayed on
your homepage. Many hosting offers are fee-based and depending
on the offer (and the price you have to pay...) you get a lot of
storage space and other bonuses such as backup service, 24-hour
help hotline, etc.

What all these hosting offers have in common is that you then

82

receive an Internet address at which the copies of your files
uploaded to the server can be accessed by anyone. This Internet
address is also called an URL ("Uniform Resource Locator"). For
example, the URL of this book is http://sven.kir.jp/JS.

Now anyone who enters this URL in their browser can see your
files on the Internet.

It has become common practice to name the first

o page or the starting page (also known as "home")
index.html.

83

http://sven.kir.jp/JS

Further reading

You have finished reading this book but still can’t get enough of
HTML? Don’t worry, we’ve got you covered! Here are some great
resources on the topic of further HTML programming.

Any literature listed here is free to download from the Internet
and is released under a similar free license as this book.

In the case that a link listed here is no longer

o accessible, it would be an idea to enter the book
title into a search engine and look for a new
working link.

HTML

Mozilla Developer Network

Not a "book" in the real sense, but rather an online reference work,
offering everything you could want on the subject of HTML.
Created by the makers of the Firefox web browser:

https://developer.mozilla.org/en-US/docs/Learn/HTML

HTMLS5 Notes for Professionals

A collection of guides and information compiled from Stack
Overflow:

https://goalkicker.com/HTML5Book/

84

https://developer.mozilla.org/en-US/docs/Learn/HTML
https://goalkicker.com/HTML5Book/

Learn JavaScript the fun way -
Programming basics for beginners

Learn
JavaScript

Programming basics
for beginners

Figure 39. The next book in this series

The direct successor to this book teaches you how to add
interactivity to so far static HTML websites using JavaScript. From
a simple calculator app, to a dog-year converter, to a math trainer
or even a rocket launch game, you will be introduced to app
programming in simple steps.

And just as with this book, all the apps presented can be run on
any device with a reasonably modern web browser without any
customization, and nothing more than a standard text editor is
required to create them. Of course, this book is free and freely
licensed just like the book you are reading right now:

http://sven.kir.jp/]S

85

http://sven.kir.jp/JS

License

The text of this work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License

[@ocle)

To view a copy of this license, visit: https://creativecommons.org/
licenses/by-nc-sa/4.0/

You are free to:

* Share: Copy and redistribute the material in any medium or
format.

* Adapt: Remix, transform, and build upon the material.

The licensor cannot revoke these freedoms as long as you follow
the license terms. Under the following terms:

» Attribution: You must give appropriate credit, provide a link
to the license, and indicate if changes were made. You may do
S0 in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

* NonCommercial: You may not use the material for
commercial purposes.

» ShareAlike: If you remix, transform, or build upon the
material, you must distribute your contributions under the
same license as the original.

* No additional restrictions: You may not apply legal terms or
technological measures that legally restrict others from doing
anything the license permits.

Notices:

86

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

You do not have to comply with the license for elements of the
material in the public domain or where your use is permitted by
an applicable exception or limitation.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use. For example, other
rights such as publicity, privacy, or moral rights may limit how you
use the material.

87

Want to try your hand at creating your own HTML webpage with
your computer, but don't have any programming experience?
Then this is the book for you!

Absolute programming beginners will be taught in easy-to-
understand English to create their own funky websites that will
run on computers, tablets, smartphones ... basically they run on
any device with a browser!

For example create a webpage that looks like a proper newspaper,
or another one that resembles a “WANTED!” poster from some
cheesy movie.

This is the first book in the
series and is followed by

o000 Chili News X + (X X) Wanted X 4k

C D file:jjusers/sven/JS/News.html B % » > C D filesfl/Users/sven/JS/Wanted.. ¥ » =

| Champions - 10 years in a row ‘ | WANTEDI

The champion of the German soccer league Bundesliga in the 2021/22 season is
the FC Bayern Munich. Just like last year. And the year before. And the year
before that. And ... heck: For the past 10 years, the championship celebration
has been held in just one city in Germany. This year, too, the Marienplatz in
front of the city hall in Munich's venerable city center will be bathed entirely in
the club's red colors as tens of thousands of fans will gather there to celebrate
their team.

The world's most boring soccer league

The Bavarian club's dominance logically delights Munich's fans - but for the Halfgren Orkinson
rest of Germany, for the past decade, it's only been all about "Who's going to

finish second this year?" Unfortunately, that doesn't make it all that interesting

for many soccer fans to watch the German league.

Success through shady means?
Reward:
Rumors that the FC Bayern partly is financed by means that are not entirely 2
legal have been around for quite some time. The fact that the club's president
was sentenced to several years in prison for tax evasion in 2014 doesn't exactly
| make these rumors fade away either ...

~ See nearest palice station for info

Sven Koerber-Abe is an associate professor at the Faculty of Science
and Engineering of the Aoyama Gakuin University in Tokyo.

The whole book series is : free of charge and released

under the
- [Qlogle)

http://sven.kir.jp/JS

	Learn HTML the fun way – Programming basics for beginners
	Contents
	Acknowledgements
	Intro
	What tools do you need?

	Basic structure of HTML files
	Empty HTML file

	HTML formatting
	Paragraphs & line breaks
	Bold, Italics & Co.
	Headings
	Colors
	Font

	Links
	Links to locations on the same page
	Links to other files

	Images
	Image border and alt name

	Styling the body
	Body border & shadow
	Horizontal line
	Lists

	Sharing & uploading your HTML files
	Your own homepage on the Internet

	Further reading
	License

